Small-Scale Variability in the Soil Microbial Community Structure in a Semideveloped Farm in Zambia

Author:

Hamamoto Toru1ORCID,Chirwa Meki2,Nyambe Imasiku3,Uchida Yoshitaka4ORCID

Affiliation:

1. Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-Ku, Sapporo, Hokkaido 060-8589, Japan

2. Geology Department, University of Zambia, 10101 Lusaka, Zambia

3. Integrated Water Resources Management Center, Geology Department, University of Zambia, 10101 Lusaka, Zambia

4. Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-Ku, Sapporo, Hokkaido 060-8589, Japan

Abstract

The conversion of natural lands into agricultural lands can lead to changes in the soil microbial community structure which, in turn, can affect soil functions. However, few studies have examined the effect of land use changes on the soil microbial community structure in sub-Saharan Africa. Therefore, the aim of this research was to investigate the relationships among soil characteristics and microbial communities in natural and agricultural ecosystems in a semideveloped lowland farm in the central region of Zambia, within which small-scale wetlands had been partly developed as watermelon (Citrullus lanatus) and/or maize (Zea mays) farms. We sampled soils from four different land use types within this farm: “native forest,” “grassland,” “watermelon farm,” and “maize farm.” We found that the land use type had a significant effect on the soil bacterial community structure at the class level, with the class Bacilli having significantly higher relative abundances in the forest sites and Gammaproteobacteria having significantly higher relative abundances in the maize sites than in the other land use types. These findings indicate that these bacterial classes may be sensitive to changes in soil ecosystems, and so further studies are required to investigate microbial indicators for the sustainable development of wetlands in sub-Saharan Africa.

Funder

United Nations University

Publisher

Hindawi Limited

Subject

Earth-Surface Processes,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3