Author:
Yang Ying,Shi Yu,Fang Jie,Chu Haiyan,Adams Jonathan M.
Abstract
There has been little study on the biogeographical patterns of microbial co-occurrence, especially in agricultural soils. Here we investigated the biogeographical patterns and major drivers of co-occurrence network topological structure, and the relative abundance of keystone taxa for soil bacterial and fungal communities using high-throughput sequencing on a set of 90 samples across a 1,092 km transect in wheat fields of the North China Plain (NCP). We found that pH was the most important environmental factor driving network topology and relative abundance of keystone taxa. For the metacommunity composed of both bacteria and fungi, and for the bacterial community alone, lower soil pH was associated with a more complex microbial network. However, the network for fungi showed no strong trend with soil pH. In addition, keystone taxa abundance was positively correlated with ecosystem function and stability, and best explained by pH. Our results present new perspectives on impacts of pH on soil microbial network structure across large scales in agricultural environments. This improved knowledge of community processes provides a step toward understanding of functioning and stability of agricultural ecosystems.
Funder
National Natural Science Foundation of China
University of Chinese Academy of Sciences
Subject
Microbiology (medical),Microbiology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献