Bacterial Colony Algorithms for Association Rule Mining in Static and Stream Data

Author:

Cunha Danilo S. da1ORCID,Xavier Rafael S.1,Ferrari Daniel G.1,Vilasbôas Fabrício G.12,de Castro Leandro N.1ORCID

Affiliation:

1. Natural Computing and Machine Learning Laboratory (LCoN), Mackenzie Presbyterian University, São Paulo 01302-907, Brazil

2. AXONDATA Analytics Technology LLA, São Paulo, Brazil

Abstract

Bacterial colonies perform a cooperative and distributed exploration of the environmental resources by using their quorum-sensing mechanisms. This paper describes how bacterial colony networks and their skills to explore resources can be used as tools for mining association rules in static and stream data. A new algorithm is designed to maintain diverse solutions to the problems at hand, and its performance is compared to that of other well-known bacteria, genetic, and immune-inspired algorithms: Bacterial Foraging Optimization (BFO), a Genetic Algorithm (GA), and the Clonal Selection Algorithm (CLONALG). Taking into account the superior performance of our approach in static data, we applied the algorithms to dynamic environments by converting static into flow data via a stream data model named sliding-window. We also provide some notes on the running time of the proposed algorithm using different hardware and software architectures.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3