Lycopene: Hepatoprotective and Antioxidant Effects toward Bisphenol A-Induced Toxicity in Female Wistar Rats

Author:

Abdel-Rahman Haidy G.1ORCID,Abdelrazek Heba M. A.2ORCID,Zeidan Dalia W.3,Mohamed Rasha M.4,Abdelazim Aaser M.56

Affiliation:

1. Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt

2. Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt

3. Department of Home and Economics, Nutrition and Food Science Branch, Faculty of Education, Suez Canal University, Ismailia, Egypt

4. Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt

5. Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt

6. Department of Basic Medical Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia

Abstract

Bisphenol A (BPA)—an endocrine disruptor xenoestrogen—is widely spread in the environment. Lycopene (LYC) is an antioxidant phytochemical carotenoid. The hereby study was designed to verify the deleterious effect of BPA on cyclic female rats’ hepatic tissue as well as evaluation of the effect of LYC toward BPA hepatic perturbation. Twenty-eight female Wistar rats were allocated equally into four groups: control group, LYC group (10 mg/kg B.wt), BPA group (10 mg/kg B.wt), and BPA + LYC group (the same doses as former groups). The treatments were given daily via gavage to the rats for 30 days. The rats in BPA displayed high activities of serum liver enzymes with low levels of total proteins (TP) and albumin. Moreover, BPA induced hepatic oxidative stress via depletion of antioxidant enzymes concomitant with augmentation of lipid peroxidation, increased comet tail DNA %, and overexpression of caspase-3. Meanwhile, LYC administration reduced the cytotoxic effects of BPA on hepatic tissue, through improving the liver function biomarkers and oxidant-antioxidant state as well as DNA damage around the control values. These findings were confirmed by hepatic histopathological examination. Finally, LYC credited to have a noticeable protective effect versus BPA provoked oxidative injury and apoptosis of the liver tissue.

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3