Fast Extraction for Skewed Source Signals Using Conditional Expectation

Author:

Su Qiao1ORCID,Wei Yimin1,Deng Changliang1,Shen Yuehong1

Affiliation:

1. College of Communication Engineering, Army Engineering University of PLA, Nanjing 210007, China

Abstract

The extraction of the stochastic source signals whose probability density functions (PDFs) are skewed is very important in many applications such as biomedical signal processing and mechanical fault diagnosis. This paper shows that the skewed source signal with the maximal absolute value of skewness can be fast extracted by a proposed algorithm using conditional expectation. Compared with the existing conditional expectation-based algorithms, the proposed one possesses two main advantages. One is that it does not require the prior knowledge of the positive support of the desired source, namely the time indices where the source of interest is positive. The other is that it can be employed both in the determined and underdetermined cases. Furthermore, the proposed algorithm is mainly based on the first- and second-order statistics and does not need the preprocessing so that the computational cost is significantly low. Simulation results show the superiority of the proposed algorithm over the existing methods and indicate that the proposed algorithm also performs well in the underdetermined case when the number of sensors is slightly less than that of sources.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3