Extraction of Specific Signals with Temporal Structure

Author:

Barros Allan Kardec1,Cichocki Andrzej2

Affiliation:

1. Bio-mimetic Control Research Center, RIKEN, Moriyama-ku, Shimoshidami, Nagoya 463-0003, Japan

2. Brain Science Institute, RIKEN, Wako-shi, Saitama 351-01, Japan

Abstract

In this work we develop a very simple batch learning algorithm for semi-blind extraction of a desired source signal with temporal structure from linear mixtures. Although we use the concept of sequential blind extraction of sources and independent component analysis, we do not carry out the extraction in a completely blind manner; neither do we assume that sources are statistically independent. In fact, we show that the a priori information about the autocorrelation function of primary sources can be used to extract the desired signals (sources of interest) from their linear mixtures. Extensive computer simulations and real data application experiments confirm the validity and high performance of the proposed algorithm.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Fast Adaptive LPCA Method for Fetal ECG Extraction Based on Multichannel Signals;IEEE Transactions on Instrumentation and Measurement;2024

2. A Denoising Method for Cable Partial Discharge Signals Based on Image Information Entropy and Multivariate Variational Mode Decomposition;IEEE Transactions on Instrumentation and Measurement;2024

3. Adaptive Local PCA Method for Extracting Fetal ECG from Single Channel Abdominal ECG Signal;2023 IEEE 6th International Conference on Information Systems and Computer Aided Education (ICISCAE);2023-09-23

4. EarAcE;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2023-06-12

5. Interpreting the Contribution of Sensors in Blind Source Extraction by Means of Shapley Values;IEEE Signal Processing Letters;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3