Modeling Evapotranspiration Response to Climatic Forcings Using Data-Driven Techniques in Grassland Ecosystems

Author:

Dou Xianming12,Yang Yongguo12ORCID

Affiliation:

1. Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process of Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China

2. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Remarkable progress has been made over the last decade toward characterizing the mechanisms that dominate the exchange of water vapor between the biosphere and the atmosphere. This is attributed partly to the considerable development of machine learning techniques that allow the scientific community to use these advanced tools for approximating the nonlinear processes affecting the variation of water vapor in terrestrial ecosystems. Three novel machine learning approaches, namely, group method of data handling, extreme learning machine (ELM), and adaptive neurofuzzy inference system (ANFIS), were developed to simulate and forecast the daily evapotranspiration (ET) at four different grassland sites based on the flux tower data using the eddy covariance method. These models were compared with the extensively utilized data-driven models, including artificial neural network, generalized regression neural network, and support vector machine (SVM). Moreover, the influences of internal functions on their corresponding models (SVM, ELM, and ANFIS) were investigated together. It was demonstrated that most developed models did good job of simulating and forecasting daily ET at the four sites. In addition to strengths of robustness and simplicity, the newly proposed methods achieved the estimates comparable to those of the conventional approaches and accordingly can be used as promising alternatives to traditional methods. It was further discovered that the generalization performance of the ELM, ANFIS, and SVM models strongly depended on their respective internal functions, especially for SVM.

Funder

Natural Science Fund of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3