Improving the daily pan evaporation estimation of long short-term memory and support vector regression models by using the Wild Horse Optimizer algorithm

Author:

Shabani Mohammad1,Asadi Mohammad Ali2,Fathian Hossein3

Affiliation:

1. a Department of Water Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran

2. b Department of Computer, Shiraz Branch, Islamic Azad University, Shiraz, Iran

3. c Department of Water Resources Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

Abstract

ABSTRACT Evaporation is a basic element in the hydrological cycle that plays a vital role in a region's water balance. In this paper, the Wild Horse Optimizer (WHO) algorithm was used to optimize long short-term memory (LSTM) and support vector regression (SVR) to estimate daily pan evaporation (Ep). Primary meteorological variables including minimum temperature (Tmin), maximum temperature (Tmax), sunshine hours (SSH), relative humidity (RH), and wind speed (WS) were collected from two synoptic meteorological stations with different climates which are situated in Fars province, Iran. One of the stations is located in Larestan city with a hot desert climate and the other is in Abadeh city with a cold dry climate. The partial mutual information (PMI) algorithm was utilized to identify the efficient input variables (EIVs) on Ep. The results of the PMI algorithm proved that the Tmax, Tmin, and RH for Larestan station and also the Tmax, Tmin, and SSH for Abadeh station are the EIVs on Ep. The results showed the LSTM–WHO hybrid model for both stations can ameliorate the daily Ep estimation and it can also reduce the estimation error. Therefore, the LSTM–WHO hybrid model was proposed as a powerful model compared to standalone models in estimating daily Ep.

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3