Mathematical Simulation about Gas Transport in a Dual-Porosity Tight Gas Reservoir considering Multiple Effects

Author:

Chen Jing1ORCID,Song Xinmin1,Li Baozhu1,Li Wuguang2,Liao Changlin1,Yang Lei3

Affiliation:

1. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China

2. Science and Technology Department, Southwest Oil & Gas Field Company, PetroChina, Sichuan 610500, China

3. Tianjin Gangrui Petroleum Engineering Technology Company Limited, Tianjing 300280, China

Abstract

Threshold pressure gradient, gas slippage, and stress sensitivity have important effects on the production of a tight gas reservoir. But previous studies only focused on one or two of these effects. In this study, a mathematical model considering these three effects was established to describe gas transport in a dual-porosity tight gas reservoir. Threshold pressure gradient, gas slippage, and stress sensitivity are simultaneously considered in the velocity term of continuity equation which is mainly different from the previous research results. The partial differential equation and definite solution condition are discretized by a central difference method. A finite difference procedure was compiled and applied to solve this numerical model and predict the productivity of a production well in a dual-porosity tight gas reservoir. The difference between the predicted and tested cumulative production is less than 10%, which indicates that the proposed mathematical model can be used to describe the characteristics of gas flow in the dual-porosity tight gas reservoir. Then, gas productivity of five different scenarios considering these effects was compared. Results show that both stress sensitivity and threshold pressure gradient are negatively correlated with gas production, while gas slippage is positively correlated with gas production. Among them, stress sensitivity has the greatest impact on the production of a dual-porosity tight gas reservoir. Overall, these three effects have great influence on the development of the dual-porosity tight gas reservoir, which should be considered in the production prediction.

Funder

PetroChina Company Limited

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3