Performance and Stability Analysis of Built-In Self-Read and Write Assist 10T SRAM Cell

Author:

Ganesh Chokkakula12ORCID,Noorbasha Fazal1ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, AP, India

2. Department of Electronics and Communication Engineering, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India

Abstract

This work presents the performance and stability analysis of the proposed built-in self-read and write assist 10T SRAM (BSRWA 10T) for better performance in terms of thermal stability and fast write access, which is suitable for military and aerospace applications. The performance of the proposed SRAM cell dominates the previous SRAM cells, i.e., conventional, fully differential 10T-ST (FD 10T-ST), single stacked disturbance-free 9T-ST (SSDF 9T-ST). The proposed SRAM cell dominates the SSDF 9T-ST SRAM cell in terms of write ability. The built-in self-read and write assist structure of the memory cell also dominates the improved write ability of SSDF 9T-ST SRAM by assist circuits such as negative bit line, ultra-dynamic voltage scaling (UDVS), write assist combining negative BL, and VDD collapse. The impact of assist circuits on write performance of memory cells is observed using Monte Carlo simulation for write margin (WM) parameter. WM of SSDF 9T-ST SRAM is improved by 15% and 25% by adding UDVS assist circuit and write assist combining negative BL and VDD collapse circuit. But BSRWA SRAM cell itself can improve WM by 32% without any assist circuit. The impact of temperature variation on the performance of memory cells is observed using Monte Carlo simulation for the HSNM parameter. The deviation of HSNM for 15°C to 55°C is 14%, 5%, 4%, and 1% in conventional SRAM cell, FD 10T SRAM cell, SSDF 9T SRAM cell, and proposed BSRWA 10T SRAM cell, respectively. The proposed SRAM cell is designed at a 22 nm CMOS technology node and verified in the Synopsys Custom compiler. MC simulation results are monitored on Synopsys Cosmo-scope wave viewer.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3