Optimal Approaches for Hard Milling of SKD11 Steel Under MQL Conditions Using SIO2 Nanoparticles

Author:

Nguyen Quoc-Manh1,Do The-Vinh2ORCID

Affiliation:

1. Hung Yen University of Technology and Education, Hai Duong, Vietnam

2. Thai Nguyen University of Technology, Thái Nguyêna, Vietnam

Abstract

Productivity and quality are always two goals in the production process. In metal cutting, two prominent representatives of quality and productivity are roughness and material removal rate (MRR). In this study, the Response Surface method was used to perform single-objective and multiobjective optimizations during the hard milling of SKD11 steel. From there, comparative analyzes are carried out to give effective advice for different approaches in actual production. The selected inputs are the nanoparticle concentration in the cutting oil and three typical cutting parameters including cutting velocity, depth of cut, and feed rate. Each input will have three levels including low, high and average. The L27 orthogonal array developed by Taguchi was applied to the experimental design. In addition, ANOVA was also used to evaluate the statistical indicators of the study. The results of single-objective optimization show that the feed rate is the main influencing factor for the roughness followed by the nanoparticle concentration. They contribute 51.2% and 21.12% of the total roughness effect, respectively. On the other hand, the main factors affecting the material removal rate are the depth of cut and feed rate. In multiobjective optimization, a compromise solution has also been proposed to achieve small roughness and high material removal rate. The minimum roughness was 0.1956 μm and the maximum material removal rate was 1479.8688 mm3/min when applying the multiobjective optimal machining condition.

Funder

Thai Nguyen University of Technology

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3