Vehicle Load Spectrum and Fatigue Vehicle Model of a Long-Span Concrete-Filled Steel Tube (CFST) Arch Bridge Based on Measured Data of Weight-In-Motion System

Author:

Deng Luming1ORCID,Deng Yulin1ORCID

Affiliation:

1. Department of Road and Bridge Engineering, School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China

Abstract

Highway traffic load, speed, and volume have been increasing continuously over the years. Because of its special structural form, the fatigue problem of a long-span concrete-filled steel tube arch bridge becomes more and more serious. To research the vehicle load spectrum and fatigue vehicle model of a long-span concrete-filled steel tubular arch bridge, the traffic data of the arch bridge were collected using the weight-in-motion system. The vehicle type and vehicle load in the actual traffic flow have strong stochastic characteristics, which cannot be directly applied. Therefore, according to the measured data, 10 representative models are proposed to facilitate the classification and screening of vehicle data. The wheelbase, mass, axle load, and overload data of the representative vehicle types were analysed, and the axle load distribution characteristics of vehicles in different lanes were studied. It is found that the vehicle load is not uniformly distributed in different lanes but concentrated in one lane. Moreover, a vehicle load spectrum for the fatigue assessment of the long-span concrete-filled steel tubular arch bridge is proposed. Based on the fatigue damage equivalence principle, a fatigue vehicle model and a simplified fatigue vehicle model of bridge heavy-duty vehicles are proposed. Compared with the model in the AASHTO specification, it is found that the weight of the local fatigue vehicle load model is 15.1 t heavier than the vehicle model given in the specification. This study could be further referenced in bridge-fatigue life prediction, management and maintenance, etc.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference27 articles.

1. Vehicular Overloads: Load Model, Bridge Safety, and Permit Checking

2. Fatigue performance of floorbeam cutout detail of orthotropic steel bridge on heavy freight transportation highway;Z. Zhiwen;China Journal of Highway and Transport,2017

3. Vehicle survey and local fatigue analysis of a highway bridge;P. Peng;China Civil Engineering Journal,2011

4. Truck Models for Improved Fatigue Life Predictions of Steel Bridges

5. Relating Axle Load Spectra to Truck Gross Vehicle Weights and Volumes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3