Influence of Foundation Pit Excavation on Tunnels at Different Locations

Author:

Wang Chengwu1ORCID,Sun Huasheng1ORCID,Zhang Jihua1ORCID,Lu Yu1ORCID

Affiliation:

1. Faculty of Architecture and Civil Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, China

Abstract

To evaluate the tunnel deformation law and soil stress distribution between foundation pit excavation and tunnel in different locations, numerical analyses using the hypoplastic model are conducted based on reported centrifuge model tests. Two cases are designed to investigate the effects of the foundation pit excavation on the deformation of existing tunnels. In case C, an existing tunnel is directly located underneath the foundation pit; in case S, the tunnel is located at one side of the foundation pit. Three-dimensional tunnel deformation mechanisms along the tunnel axis are observed through the variation of stresses change in the soil circumambient tunnel. It is found that compared with case C, there are minor Earth pressure changes in case S. The different Earth pressure changes around the tunnel lead to different modes of tunnel deformation. The maximum additional tunnel bending strain appears at the crown and invert, while the minimum value appears at the spring lines in case C. In case S, the maximum values appear in the right shoulder and left knee, while the minimum values appear on the left shoulder and right knee. The additional tunnel bending strain and stress reduction at different tunnel cross sections in case S is much smaller than those in case C. In case C, after the excavation, lateral Earth pressure coefficient changes ΔKxz and ΔKyz rise to 70% and 150%, respectively, of their initial value at shoulders, while little changes can be found at spring lines. However, in case S, the maximum absolute value of both ΔKxz/(Kxz)0 and (ΔKyz/(Kyz)0) is no more than 10%.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3