A Backstepping Controller with the RBF Neural Network for Folding-Boom Aerial Work Platform

Author:

Hu Haidong1ORCID,Song Yandong1ORCID,Fan Pu1ORCID,Diao Chen2ORCID,Cai Ning3ORCID

Affiliation:

1. School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

2. School of Information Engineering, Ningxia University, Yinchuan 750021, China

3. School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

Aerial work platform is a kind of engineering vehicle which is used for hoisting personnel to the appointed place for maintenance or installation. Based on the dynamics model considering the flexible deformation existing in the arm system of folding-boom aerial platform vehicle, this study presents a NN-based backstepping controller used for trajectory tracking control of work platform. The proposed controller can reduce tracking error of work platform and suppress the vibration simultaneously by using the RBF neural network system to compensate model uncertainties and disturbances. Furthermore, we prove that the whole system is stable and convergent by Lyapunov stability theorem. In addition, we give the simulation results which show that the good control performance of the designed controller for trajectory tracking and vibration inhabiting of work platform in the case of model uncertainties.

Funder

Natural Science Foundation of Inner Mongolia

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3