Identification of Unknown, Time-Varying Forces/Moments in Dynamics and Vibration Problems Using a New Approach To Deconvolution

Author:

Johnson C.D.1

Affiliation:

1. Electrical & Computer Engineering Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA

Abstract

In this paper an alternative approach to the classical deconvolution idea is used to obtain a new and practical method for real-time identification of unknown, time-varying forces/moments in a general class of linear (linearized) dynamics and vibration problems with multiple-inputs and multiple-measurements. This new method for force/moment identification is unique in the respect that the uncertainty in the force/moment time-variations is not characterized by random-process methods, but rather by a generalized spline-model with totally unknown weighting coefficients and completely known basis-functions. The basis-functions are custom chosen in each application to reflect, qualitatively, the known characteristics of the force/moment time-variations to be identified. The method does not involve explicit identification of the unknown weighting coefficients. General-purpose identification algorithms for both continuous-time and discrete-time measurements are developed, and a worked example including computer simulation results is presented.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental Study of an Adaptive Sequential Nonlinear LSE with Unknown Inputs for Structural Damage Tracking;Shock and Vibration;2014

2. Force identification using the concept of displacement transmissibility;Journal of Sound and Vibration;2013-04

3. A Force Identification Approach for Multiple-Degree-of-Freedom Systems;Dynamics of Civil Structures, Volume 4;2011

4. Load Updating for Nonlinear Finite Element Models;AIAA Journal;2007-07

5. Finite Element Load Updating for Plates;45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference;2004-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3