Surface Heat Island in Shanghai and Its Relationship with Urban Development from 1989 to 2013

Author:

Chen Liang12,Jiang Rong2ORCID,Xiang Wei-Ning2

Affiliation:

1. School of Geographic Sciences, East China Normal University, Shanghai 200241, China

2. Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China

Abstract

The continuous expansion of impervious artificial surfaces in cities has significantly influenced the urban thermal environment. This paper examines the spatiotemporal variation of the diurnal surface urban heat island (SUHI) in Shanghai from 1989 to 2013, a period during which the city has experienced drastic development changes. A remote sensing approach was taken to derive the spatial patterns of Shanghai’s land surface temperature (LST) from Landsat Thematic Mapper (TM) images and Operational Land Imager (OLI) data. The LST pattern was further classified into five LST classes to look at the relative SUHI intensity level across the whole city. Spatial analyses, namely, spatial association and centroid movement analysis, were conducted to reveal the trends of LST changes at both local and holistic scales. To understand the potential drivers for the present spatiotemporal variation of SUHI, different indicators including land use change, population density, night light data, and vegetation were analyzed and compared with LST changes. Based on the quantitative analysis and the socioeconomic context of Shanghai, “heating up” regions were identified, possible reasons for such SUHI variation were summarized, and districts that are most vulnerable to extreme heat conditions were projected. In terms of implication for urban development, planning and design recommendations were suggested to improve the urban thermal environment in Shanghai.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3