Research on Spatial and Temporal Patterns of Heat Island Variability and Influencing Factors in Urban Center Areas: A Case Study of Beijing’s Central Area

Author:

Wen Zheng1,Tian Dongwei12,Zhu Yongqiang1

Affiliation:

1. School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

2. Research Center for Urban Big Data Applications, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

Abstract

Studying the urban heat island effect and actively exploring effective measures for its mitigation and alleviation can provide important parameters for urban ecological environment monitoring and propose rational strategies to address environmental degradation. This article, with the background of urban renewal projects in Beijing, focuses on the central area of Beijing as the research object. Landsat ETM+/OLI_ TIRS data from 2000 to 2020 are used as the main remote sensing imagery source, combined with functional information data and spatial attribute data of open spaces in the central area. Based on the mono-window (MW) algorithm, this study first quantitatively retrieves and categorizes the summer land surface temperature in Beijing’s central area and analyzes its spatiotemporal characteristics using the direction distribution method, revealing regular patterns in the temporal and spatial dimensions. The results show a gradual decrease in the size of the persistent high-temperature concentration area over time. Subsequently, the seasonal autoregressive integrated moving average (SARIMA) model is employed to predict the changing trends of the urban heat island and the occurrence time of the strongest and weakest heat islands. Higher land surface temperature (LST) years are projected for 2025 and 2035, with the lowest year being 2030. Lastly, the correlation coefficient and Moran’s index are used to analyze the correlation between the urban heat island and its corresponding influencing factors in different years. The results indicate that population density, nighttime light, and gross domestic product (GDP) have significant positive effects on the heat island intensity from a temporal perspective. Normalized difference vegetation index (NDVI) shows a significant negative relationship with the heat island intensity when analyzed over time. The research findings provide important reference for rational urban planning, layout, and construction, and hold significance for advancing urban renewal efforts.

Funder

Beijing Key Laboratory of Urban Spatial Information Engineering

BUCEA Doctor Graduate Scientific Research Ability Improvement Project

Open Fund of Key Laboratory of Urban Spatial Information, Ministry of Natural Resources

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3