Identification and Prognostic Value Exploration of Radiotherapy Sensitivity-Associated Genes in Non-Small-Cell Lung Cancer

Author:

Ma Qing1ORCID,Geng Kai2,Xiao Ping1,Zeng Lili1

Affiliation:

1. Department Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China

2. Radiotherapy Department, Tianjin Medical University General Hospital, Tianjin 300052, China

Abstract

Background. Non-small-cell lung cancer (NSCLC) is a prevalent malignancy with high mortality and poor prognosis. The radiotherapy is one of the most common treatments of NSCLC, and the radiotherapy sensitivity of patients could affect the individual prognosis of NSCLC. However, the prognostic signatures related to radiotherapy response still remain limited. Here, we explored the radiosensitivity-associated genes and constructed the prognostically predictive model of NSCLC cases. Methods. The NSCLC samples with radiotherapy records were obtained from The Cancer Genome Atlas database, and the mRNA expression profiles of NSCLC patients from the GSE30219 and GSE31210 datasets were obtained from the Gene Expression Omnibus database. The Weighted Gene Coexpression Network Analysis (WGCNA), univariate, least absolute shrinkage and selection operator (LASSO), multivariate Cox regression analysis, and nomogram were conducted to identify and validate the radiotherapy sensitivity-related signature. Results. WGCNA revealed that 365 genes were significantly correlated with radiotherapy response. LASSO Cox regression analysis identified 8 genes, including FOLR3, SLC6A11, ALPP, IGFN1, KCNJ12, RPS4XP22, HIST1H2BH, and BLACAT1. The overall survival (OS) of the low-risk group was better than that of the high-risk group separated by the Risk Score based on these 8 genes for the NSCLC patients. Furthermore, the immune infiltration analysis showed that monocytes and activated memory CD4 T cells had different relative proportions in the low-risk group compared with the high-risk group. The Risk Score was correlated with immune checkpoints, including CTLA4, PDL1, LAG3, and TIGIT. Conclusion. We identified 365 genes potentially correlated with the radiotherapy response of NSCLC patients. The Risk Score model based on the identified 8 genes can predict the prognosis of NSCLC patients.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3