Prediction of radiosensitivity and radiocurability using a novel supervised artificial neural network

Author:

Zeng Zihang,Luo Maoling,Li Yangyi,Li Jiali,Huang Zhengrong,Zeng Yuxin,Yuan Yu,Wang Mengqin,Liu Yuying,Gong Yan,Xie Conghua

Abstract

Abstract Background Radiotherapy has been widely used to treat various cancers, but its efficacy depends on the individual involved. Traditional gene-based machine-learning models have been widely used to predict radiosensitivity. However, there is still a lack of emerging powerful models, artificial neural networks (ANN), in the practice of gene-based radiosensitivity prediction. In addition, ANN may overfit and learn biologically irrelevant features. Methods We developed a novel ANN with Selective Connection based on Gene Patterns (namely ANN-SCGP) to predict radiosensitivity and radiocurability. We creatively used gene patterns (gene similarity or gene interaction information) to control the "on–off" of the first layer of weights, enabling the low-dimensional features to learn the gene pattern information. ANN-SCGP was trained and tested in 82 cell lines and 1,101 patients from the 11 pan-cancer cohorts. Results For survival fraction at 2 Gy, the root mean squared errors (RMSE) of prediction in ANN-SCGP was the smallest among all algorithms (mean RMSE: 0.1587–0.1654). For radiocurability, ANN-SCGP achieved the first and second largest C-index in the 12/20 and 4/20 tests, respectively. The low dimensional output of ANN-SCGP reproduced the patterns of gene similarity. Moreover, the pan-cancer analysis indicated that immune signals and DNA damage responses were associated with radiocurability. Conclusions As a model including gene pattern information, ANN-SCGP had superior prediction abilities than traditional models. Our work provided novel insights into radiosensitivity and radiocurability.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3