Fish Detection Using Deep Learning

Author:

Cui Suxia1ORCID,Zhou Yu1,Wang Yonghui2,Zhai Lujun1

Affiliation:

1. Department of Electrical and Computer Engineering, Prairie View A&M University, Prairie View, TX 77446, USA

2. Department of Computer Science, Prairie View A&M University, Prairie View, TX 77446, USA

Abstract

Recently, human being’s curiosity has been expanded from the land to the sky and the sea. Besides sending people to explore the ocean and outer space, robots are designed for some tasks dangerous for living creatures. Take the ocean exploration for an example. There are many projects or competitions on the design of Autonomous Underwater Vehicle (AUV) which attracted many interests. Authors of this article have learned the necessity of platform upgrade from a previous AUV design project, and would like to share the experience of one task extension in the area of fish detection. Because most of the embedded systems have been improved by fast growing computing and sensing technologies, which makes them possible to incorporate more and more complicated algorithms. In an AUV, after acquiring surrounding information from sensors, how to perceive and analyse corresponding information for better judgement is one of the challenges. The processing procedure can mimic human being’s learning routines. An advanced system with more computing power can facilitate deep learning feature, which exploit many neural network algorithms to simulate human brains. In this paper, a convolutional neural network (CNN) based fish detection method was proposed. The training data set was collected from the Gulf of Mexico by a digital camera. To fit into this unique need, three optimization approaches were applied to the CNN: data augmentation, network simplification, and training process speed up. Data augmentation transformation provided more learning samples; the network was simplified to accommodate the artificial neural network; the training process speed up is introduced to make the training process more time efficient. Experimental results showed that the proposed model is promising, and has the potential to be extended to other underwear objects.

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Civil and Structural Engineering,Computational Mechanics

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applications and analytical approaches using imaging sonar for quantifying behavioural interactions among aquatic organisms and their environment;ICES Journal of Marine Science;2023-11-30

2. Acoustic fish species identification using deep learning and machine learning algorithms: A systematic review;Fisheries Research;2023-10

3. Automated Fish Species Identification using Computer Vision;2023 7th International Conference On Computing, Communication, Control And Automation (ICCUBEA);2023-08-18

4. COVID-19 Diagnosis Through Deep Learning Techniques and Chest X-Ray Images;SN Computer Science;2023-08-11

5. Real- Time Detecting and Tracking of Squids Using YOLOv5;2023 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD);2023-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3