Integrating Edge-Intelligence in AUV for Real-Time Fish Hotspot Identification and Fish Species Classification

Author:

Sowmmiya U.1ORCID,Roselyn J. Preetha1ORCID,Sundaravadivel Prabha2ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering (EEE), SRM Institute of Science & Technology, Kattankulathur 603203, Tamil Nadu, India

2. Department of Electrical and Computer Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA

Abstract

Enhancing the livelihood environment for fishermen’s communities with the rapid technological growth is essential in the marine sector. Among the various issues in the fishing industry, fishing zone identification and fish catch detection play a significant role in the fishing community. In this work, the automated prediction of potential fishing zones and classification of fish species in an aquatic environment through machine learning algorithms is developed and implemented. A prototype of the boat structure is designed and developed with lightweight wooden material encompassing all necessary sensors and cameras. The functions of the unmanned boat (FishID-AUV) are based on the user’s control through a user-friendly mobile/web application (APP). The different features impacting the identification of hotspots are considered, and feature selection is performed using various classifier-based learning algorithms, namely, Naive Bayes, Nearest neighbors, Random Forest and Support Vector Machine (SVM). The performance of classifications are compared. From the real-time results, it is clear that the Naive Bayes classification model is found to provide better accuracy, which is employed in the application platform for predicting the potential fishing zone. After identifying the first catch, the species are classified using an AlexNet-based deep Convolutional Neural Network. Also, the user can fetch real-time information such as the status of fishing through live video streaming to determine the quality and quantity of fish along with information like pH, temperature and humidity. The proposed work is implemented in a real-time boat structure prototype and is validated with data from sensors and satellites.

Funder

Student Project Funding Scheme of the IEEE Madras Section

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3