Research on Fault Feature Extraction Method Based on FDM-RobustICA and MOMEDA

Author:

Yang Jingzong1ORCID,Li Xuefeng2,Wu Limei1

Affiliation:

1. School of Information, Baoshan University, Baoshan 678000, China

2. School of Transportation, Southeast University, Nanjing 211189, China

Abstract

Aiming at the difficulty of extracting rolling bearing fault features under strong background noise conditions, a method based on the Fourier decomposition method (FDM), robust independent component analysis (RobustICA), and multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) is proposed. Firstly, the FDM method is introduced to decompose the single-channel bearing fault signal into several Fourier intrinsic band functions (FIBF). Secondly, by setting the cross-correlation coefficient and kurtosis as a new selection criterion, it can effectively construct the virtual noise channel and the observation signal channel, which makes RobustICA complete the separation of the useful signal and noise well. Finally, MOMEDA is introduced to enhance the periodic impact components in the denoised signal, and then the filtered signal is analyzed by the Hilbert envelope spectrum to extract the fault characteristic frequency. Through the experimental analysis of the simulated signals and the actual bearing fault signals, the results show that the proposed method not only has the ability to suppress noise and accurately extract fault feature information but also has better performance than the traditional method of local mean decomposition (LMD) and intrinsic time-scale decomposition (ITD), highlighting its practicality in the fault diagnosis of rotating machinery.

Funder

Joint Special Fund for Basic Research of Local Universities in Yunnan Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3