Effect of Microwave Heating on the Dielectric Properties and Components of Iron-Fortified Milk

Author:

Tang Xiao-shu123,Fan Da-ming134,Hang Feng1,Yan Bo-wen34,Zhao Jian-xin123ORCID,Zhang Hao123ORCID

Affiliation:

1. State Key Laboratory of Dairy Biotechnology, Technology Center, Bright Dairy & Food Co. Ltd., Shanghai 200436, China

2. National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China

3. State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China

4. Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi 214122, China

Abstract

With the iron-fortified milk as research object, this paper makes a research on the influence of iron on the dielectric properties and wave absorption properties and effect of nutritional components, such as casein and whey protein in milk, and thermostability in the process of microwave heating, and rapid heat transfer method in ferrous gluconate–milk and ferrous chloride–milk, respectively. The results show that the iron of ionic form has greater influence to convert microwave to heat energy and the effect of microwave absorption properties was greater for ferrous chloride than for ferrous gluconate at high concentration. The effect of different forms of iron on the composition of milk was different, and the composition of milk systems was more stable by microwave heating, but the rapid heat transfer method is superior in the aim of increasing the nutritional value of milk. The ferrous gluconate–milk system has a better thermal stability than ferrous chloride–milk system. From the aspect of dielectric induction, the paper discovers the response rules of iron and evaluates the microwave thermal safety of the traditional and the iron-fortified products by microwave heating.

Funder

Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-Year Plan Period

Publisher

Hindawi Limited

Subject

Safety, Risk, Reliability and Quality,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3