Different Scenarios for Reducing Carbon Emissions, Optimal Sizing, and Design of a Stand-Alone Hybrid Renewable Energy System for Irrigation Purposes

Author:

Al-Rawashdeh Hani1,Al-Khashman Omar Ali2,Arrfou Laith M.2,Gomaa Mohamed R.13ORCID,Rezk Hegazy45,Shalby Mohammad2,Al Bdour Jehad T.2,Louzazni Mohamed6ORCID

Affiliation:

1. Mechanical Engineering Department, Faculty of Engineering, Al-Hussein Bin Talal University, Ma’an, Jordan

2. Environmental Engineering Department, Faculty of Engineering, Al-Hussein Bin Talal University, Jordan

3. Mechanical Engineering Department, Benha Faculty of Engineering, Benha University, Benha, Egypt

4. Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam bin Abdulaziz University, Saudi Arabia

5. Electrical Engineering Department, Faculty of Engineering, Minia University, Egypt

6. Science Engineer Laboratory for Energy, National School of Applied Sciences, Chouaib Doukkali University of El Jadida, El Jadida, Morocco

Abstract

Irrigation systems to supply water to agricultural land are essential in remote and isolated areas. However, these areas often face challenges and obstacles in obtaining energy for use in irrigation since many depend on diesel generators (DGs) to produce electricity. A farm located in a remote area in Al-Jafr, Jordan, uses a 100 kW DG to supply its need for electric energy for irrigation purposes. Its energy consumption is 500 kWh/day at $0.29/kWh. This paper designs a new hybrid renewable energy system (HRES) for this farm by conducting simulations using the HOMER (Hybrid Optimization of Multiple Energy Resources) software. This new system consists of solar photovoltaics (PVs), batteries, an inverter, and a 100 kW DG. The results showed a clear difference between the baseline DG-only system and the hybrid system regarding energy cost and carbon emissions. The energy price for the HRES is $0.107/kWh, and carbon dioxide emissions are reduced to 27,378 kg/yr from 184,917 kg/yr for the DG-only system. In addition, simulations and comparisons for an alternative HRES with a 60 kW DG were conducted. Based on the simulation results, the energy price was $0.091 instead of $0.19, and carbon dioxide (CO2) emissions were 15,847 kg/yr instead of 115,090 kg/yr. It was concluded that using hybrid renewable energy systems to power the irrigation of remote areas successfully reduced the energy cost, fuel consumption, emissions, and overall cost. The HOMER program makes an accurate comparison over extended periods between the four strategies (load following, cycle charging, combined dispatch, and predictive dispatch) and selects the optimal system based on the cost, emissions, fuel consumption, and percentage of renewable energy from the system.

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3