Topological Influence-Aware Recommendation on Social Networks

Author:

Li Zhaoyi12ORCID,Xiong Fei12ORCID,Wang Ximeng123,Chen Hongshu4,Xiong Xi5

Affiliation:

1. School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China

2. Key Laboratory of Communication and Information Systems, Beijing Municipal Commission of Education, Beijing Jiaotong University, Beijing 100044, China

3. Centre for Artificial Intelligence, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia

4. School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China

5. School of Cybersecurity, Chengdu University of Information Technology, Chengdu 610225, China

Abstract

Users in online networks exert different influence during the process of information propagation, and the heterogeneous influence may contribute to personalized recommendations. In this paper, we analyse the topology of social networks to investigate users’ influence strength on their neighbours. We also exploit the user-item rating matrix to find the importance of users’ ratings and determine their influence on entire social networks. Based on the local influence between users and global influence over the whole network, we propose a recommendation method with indirect interactions that makes adequate use of users’ relationships on social networks and users’ rating data. The two kinds of influence are incorporated into a matrix factorization framework. We also consider indirect interactions between users who do not have direct links with each other. Experimental results on two real-world datasets demonstrate that our proposed framework performs better than other state-of-the-art methods for all users and cold-start users. Compared with node degrees, betweenness, and clustering coefficients, coreness constitutes the best topological descriptor to identify users’ local influence, and recommendations with the measure of coreness outperform other descriptors of user influence.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3