Joint optimization decision of service provider selection and CODP positioning based on mass customization in a cloud logistics environment

Author:

Wang GuanxiongORCID,Hu Xiaojian,Wang Ting

Abstract

PurposeBy introducing the mass customization service mode into the cloud logistics environment, this paper studies the joint optimization of service provider selection and customer order decoupling point (CODP) positioning based on the mass customization service mode to provide customers with more diversified and personalized service content with lower total logistics service cost.Design/methodology/approachThis paper addresses the general process of service composition optimization based on the mass customization mode in a cloud logistics service environment and constructs a joint decision model for service provider selection and CODP positioning. In the model, the two objective functions of minimum service cost and most satisfactory delivery time are considered, and the Pareto optimal solution of the model is obtained via the NSGA-II algorithm. Then, a numerical case is used to verify the superiority of the service composition scheme based on the mass customization mode over the general scheme and to verify the significant impact of the scale effect coefficient on the optimal CODP location.Findings(1) Under the cloud logistics mode, the implementation of the logistics service mode based on mass customization can not only reduce the total cost of logistics services by means of the scale effect of massive orders on the cloud platform but also make more efficient use of a large number of logistics service providers gathered on the cloud platform to provide customers with more customized and diversified service content. (2) The scale effect coefficient directly affects the total cost of logistics services and significantly affects the location of the CODP. Therefore, before implementing the mass customization logistics service mode, the most reasonable clustering of orders on the cloud logistics platform is very important for the follow-up service combination.Originality/valueThe originality of this paper includes two aspects. One is to introduce the mass customization mode in the cloud logistics service environment for the first time and summarize the operation process of implementing the mass customization mode in the cloud logistics environment. Second, in order to solve the joint decision optimization model of provider selection and CODP positioning, this paper designs a method for solving a mixed-integer nonlinear programming model using a multi-layer coding genetic algorithm.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Reference62 articles.

1. Development of a module based service family design for mass customization of airline sector using the coalition game;Computers and Industrial Engineering,2013

2. A novel model for optimisation of logistics and manufacturing operation service composition in Cloud manufacturing system focusing on cloud-entropy;International Journal of Production Research,2019

3. A classification-based approach for integrated service matching and composition in cloud manufacturing;Robotics and Computer-Integrated Manufacturing,2020

4. Optimal pricing in mass customization supply chains with risk-averse agents and retail competition;Omega,2019

5. Mass customization-Literature review and research directions;International Journal of Production Economics,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3