Affiliation:
1. Département de Mathématiques et Statistique, Université de Montréal, Montréal, Canada H3C 3J7
Abstract
We obtain weak convergence and optimal scaling results for the random walk Metropolis algorithm with a Gaussian proposal distribution. The sampler is applied to hierarchical target distributions, which form the building block of many Bayesian analyses. The global asymptotically optimal proposal variance derived may be computed as a function of the specific target distribution considered. We also introduce the concept of locally optimal tunings, i.e., tunings that depend on the current position of the Markov chain. The theorems are proved by studying the generator of the first and second components of the algorithm and verifying their convergence to the generator of a modified RWM algorithm and a diffusion process, respectively. The rate at which the algorithm explores its state space is optimized by studying the speed measure of the limiting diffusion process. We illustrate the theory with two examples. Applications of these results on simulated and real data are also presented.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献