New Robust PCA for Outliers and Heavy Sparse Noises’ Detection via Affine Transformation, the L ∗ , w and L 2,1 Norms, and Spatial Weight Matrix in High-Dimensional Images: From the Perspective of Signal Processing

Author:

Liang Peidong1,Likassa Habte Tadesse2,Zhang Chentao13ORCID,Guo Jielong4

Affiliation:

1. Fujian (Quanzhou)-HIT Research Institute of Engineering and Technology, Quanzhou 362000, China

2. Department of Statistics, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia

3. Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China

4. Fujian Institute of Research on the Structure of Matter Fuzhou, Chinese Academy of Sciences, Fuzhou, China

Abstract

In this paper, we propose a novel robust algorithm for image recovery via affine transformations, the weighted nuclear, L , w , and the L 2,1 norms. The new method considers the spatial weight matrix to account the correlated samples in the data, the L 2,1 norm to tackle the dilemma of extreme values in the high-dimensional images, and the L , w norm newly added to alleviate the potential effects of outliers and heavy sparse noises, enabling the new approach to be more resilient to outliers and large variations in the high-dimensional images in signal processing. The determination of the parameters is involved, and the affine transformations are cast as a convex optimization problem. To mitigate the computational complexity, alternating iteratively reweighted direction method of multipliers (ADMM) method is utilized to derive a new set of recursive equations to update the optimization variables and the affine transformations iteratively in a round-robin manner. The new algorithm is superior to the state-of-the-art works in terms of accuracy on various public databases.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Mathematics (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3