New Robust Part-Based Model with Affine Transformations for Facial Landmark Localization and Detection in Big Data

Author:

Zhang Chentao12,Likassa Habte Tadesse3ORCID,Liang Peidong2ORCID,Guo Jielong4

Affiliation:

1. Fujian (Quanzhou)-HIT Research Institute of Engineering and Technology, Quanzhou 362000, China

2. Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China

3. Department of Statistics, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia

4. Fujian Institute of Research on the Structure of Matter Fuzhou, Chinese Academy of Sciences, Fuzhou, China

Abstract

In this paper, we developed a new robust part-based model for facial landmark localization and detection via affine transformation. In contrast to the existing works, the new algorithm incorporates affine transformations with the robust regression to tackle the potential effects of outliers and heavy sparse noises, occlusions and illuminations. As such, the distorted or misaligned objects can be rectified by affine transformations and the patterns of occlusions and outliers can be explicitly separated from the true underlying objects in big data. Moreover, the search of the optimal parameters and affine transformations is cast as a constrained optimization programming. To mitigate the computations, a new set of equations is derived to update the parameters involved and the affine transformations iteratively in a round-robin manner. Our way to update the parameters compared to the state of the art of the works is relatively better, as we employ a fast alternating direction method for multiplier (ADMM) algorithm that solves the parameters separately. Simulations show that the proposed method outperforms the state-of-the-art works on facial landmark localization and detection on the COFW, HELEN, and LFPW datasets.

Funder

Scientific and Technological Program of Quanzhou City

Publisher

Hindawi Limited

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3