Investigating Surface Effects on Thermomechanical Behavior of Embedded Circular Curved Nanosize Beams

Author:

Ebrahimi Farzad1ORCID,Daman Mohsen1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran

Abstract

To investigate the surface effects on thermomechanical vibration and buckling of embedded circular curved nanosize beams, nonlocal elasticity model is used in combination with surface properties including surface elasticity, surface tension, and surface density for modeling the nanoscale effect. The governing equations are determined via the energy method. Analytically Navier method is utilized to solve the governing equations for simply supported nanobeam at both ends. Solving these equations enables us to estimate the natural frequency and critical buckling load for circular curved nanobeam including Winkler and Pasternak elastic foundations and under the effect of a uniform temperature change. The results determined are verified by comparing the results with available ones in literature. The effects of various parameters such as nonlocal parameter, surface properties, Winkler and Pasternak elastic foundations, temperature, and opening angle of circular curved nanobeam on the natural frequency and critical buckling load are successfully studied. The results reveal that the natural frequency and critical buckling load of circular curved nanobeam are significantly influenced by these effects.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3