Affiliation:
1. Department of Mechanical Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran
Abstract
This paper presents a comprehensive multiparameter diagnosis method based on multiple partial discharge (PD) signals which include high-frequency current (HFC), ultrasound, and ultrahigh frequency (UHF). The HFC, ultrasound, and UHF PD are calculated under different types of faults. Therefor the characteristic values, as nine basic characteristic parameters, eight phase characteristic parameters, and the like are calculated. Diagnose signals are found with the method based on information fusion and semisupervised learning for HFC PD, adaptive mutation parameters of particle entropy for ultrasonic signals, and IIA-ART2A neural network for UHF signals. In addition, integrate the diagnostic results, which are the probability of fault of various defects and matrix, of different PD diagnosis signals, and analysis with Sugeno fuzzy integral to get the final diagnosis.
Subject
Computer Science Applications,General Engineering,Modelling and Simulation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献