Fuzzy Algorithms for Diagnosis of Furnace Transformer Insulation Condition

Author:

Karandaev Alexander S.ORCID,Yachikov Igor M.,Radionov Andrey A.ORCID,Liubimov Ivan V.,Druzhinin Nikolay N.,Khramshina Ekaterina A.

Abstract

Implementation of the smart transformer concept is critical for the deployment of IIoT-based smart grids. Top manufacturers of power electrics develop and adopt online monitoring systems. Such systems become part of high-voltage grid and unit transformers. However, furnace transformers are a broad category that this change does not affect yet. At the same time, adoption of diagnostic systems for furnace transformers is relevant because they are a heavy-duty application with no redundancy. Creating any such system requires a well-founded mathematical analysis of the facility’s condition, carefully selected diagnostic parameters, and setpoints thereof, which serve as the condition categories. The goal hereof was to create an expert system to detect insulation breach and its expansion as well as to evaluate the risk it poses to the system; the core mechanism is mathematical processing of trends in partial discharge (PD). We ran tests on a 26-MVA transformer installed on a ladle furnace at a steelworks facility. The transformer is equipped with a versatile condition monitoring system that continually measures apparent charge and PD intensity. The objective is to identify the condition of the transformer and label it with one of the generally recognized categories: Normal, Poor, Critical. The contribution of this paper consists of the first ever validation of a single generalized metric that describes the condition of transformer insulation based on the online monitoring of the PD parameters. Fuzzy logic algorithms are used in mathematical processing. The proposal is to generalize the set of diagnostic variables to a single deterministic parameter: insulation state indicator. The paper provides an example of calculating it from the apparent charge and PD power readings. To measure the indicativeness of individual parameters for predicting further development of a defect, the authors developed a method for testing the diagnostic sensitivity of these parameters to changes in the condition. The method was tested using trends in readings sampled whilst the status was degrading from Normal to Critical. The paper also shows a practical example of defect localization. The recommendation is to broadly use the method in expert systems for high-voltage equipment monitoring.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online Monitoring System for OLTC of Fum ace Transformer;2024 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2024-05-20

2. Furnace Transformer Protection Device Mitigating Open-Phase Mode During Switching of Vacuum Circuit Breaker;2024 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2024-05-20

3. Construction and optimization of data model based on knowledge feature in transmission line equipment state recognition;International Journal of Low-Carbon Technologies;2024

4. A Comprehensive Review of Signal Processing and Machine Learning Technologies for UHF PD Detection and Diagnosis (II): Pattern Recognition Approaches;IEEE Access;2024

5. Substantiation of On-Line Monitoring Methods for Surge Arrestors of Closed 110 kV Switchgear;2023 International Ural Conference on Electrical Power Engineering (UralCon);2023-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3