Experimental Study on High-Cycle Fatigue Behavior of GFRP-Steel Sleeve Composite Cross Arms

Author:

Wang Jiantao1ORCID,Tan Ning2,Zhou Shiming1,Sun Qing1ORCID

Affiliation:

1. Department of Civil Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China

2. School of Aerospace, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China

Abstract

To overcome the fatigue safety problem of transmission tower cross arms caused by the wind-induced vibrations, an experimental study on the high-cycle fatigue performance of a new type of GFRP-steel sleeve composite cross arms was carried out. A total of six specimens were subjected to 500 thousand cyclic loadings based on the practical engineering background. The stress state was monitored, and a variety of load-displacement-time curves, the energy dissipation capacity, and the dynamic strain were analyzed to examine the effects of fatigue loading. After the fatigue test, the specimens without significant fatigue failure were evaluated to derive the residual bearing capacity. Based on the residual strength theory, the cumulative damage was examined, and the fatigue life was predicted under various loading conditions to ensure the reliability of composite cross arms. It is shown that the new type full-scale GFRP-steel sleeve composite cross arms can demonstrate a high level of safety redundancy on antifatigue performance and can be expected for wide application in power transmission towers.

Funder

China Southern Power Grid

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical analysis of insulated and conventional cross arms for transmission line tower;Engineering Structures;2023-11

2. Conceptual Design of a Sustainable Bionanocomposite Bracket for a Transmission Tower’s Cross Arm Using a Hybrid Concurrent Engineering Approach;Sustainability;2023-07-10

3. Change of the Elastic Characteristics of a Fiber-Reinforced Laminate as a Result of Progressive Fatigue Damage;Solid State Phenomena;2021-04

4. Variation of the elastic characteristics of carbon/epoxy fiber laminate as a result of fatigue damage;MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2020): Proceeding of the 14th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3