Change of the Elastic Characteristics of a Fiber-Reinforced Laminate as a Result of Progressive Fatigue Damage

Author:

Nikhamkin M.Sh.1,Solomonov D.G.2

Affiliation:

1. Perm National Research Polytechnic University

2. Perm National Research Polytechnical University

Abstract

It is a widely known fact that the stiffness of polymer composite materials decreases with the accumulation of fatigue damage under cyclic loading. The purpose of this article is to develop a method and obtain experimental data on decrease of the elastic characteristics of a fiber-reinforced laminate, as a result of progressive fatigue damage. The developed technique consists of two stages. At the first one, the natural frequencies and eigenmodes of the samples during their fatigue testing are experimentally obtained. The dependences of the natural frequencies of the samples on the number of loading cycles are found. At the second stage, the four elasticity parameters of the laminate monolayer (two Young modules, the shear module and Poisson's ratio) are identified via the natural frequencies. The inverse numerical/experimental technique for material properties identification is applied. The dependences of the natural frequencies and mentioned elastic characteristics on the relative fatigue life are obtained as experimental results of both modal and fatigue tests. The results can be useful to study the fatigue behavior of the investigated materials and to create methods for calculating fatigue life.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3