Optimization on Nonlinear Dynamics of Gear Rattle in Automotive Transmission System

Author:

Liang Mingxuan1ORCID,Wang Ying1,Zhao Tian1

Affiliation:

1. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China

Abstract

Recently, gear rattle noise is gradually becoming a nonignorable issue involving comfortableness in automotive transmission for a car. Generally, the rattle noise is influenced by nonlinear dynamic of multiple pairs of idler gears in the multistage gear transmission system. Optimization methods based on nonlinear rattle dynamic analysis are worthy of further study to control the noise. In this research, an equivalent rattle dynamic model of the idler gear is proposed, and the nonlinear rattle dynamic responses are solved based on the integral method. The effect laws of key factors on nonlinear dynamic performance are investigated by using a bifurcation diagram, spectrum map, and Poincaré map. Finally, the gear backlash, equivalent mass, and rotational speed are optimized based on Kriging surrogate model (KSM) and differential evolution (DE) algorithm by taking the minimization of the maximum rattle noise as the optimal object. It can be concluded that the rattle dynamics of the idler gear show rich nonlinear characteristics as the parameters change. The proposed method can not only reduce the sound pressure level of rattle noise but also provide a viable path and reference value for the low-noise design of the gear transmission system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3