Affiliation:
1. School of Information Science and Engineering, Qufu Normal University, Rizhao 276800, China
Abstract
With the development of Internet of Things, the number of network devices is increasing, and the cloud data center load increases; some delay-sensitive services cannot be responded to timely, which results in a decreased quality of service (QoS). In this paper, we propose a method of resource estimation based on QoS in edge computing to solve this problem. Firstly, the resources are classified and matched according to the weighted Euclidean distance similarity. The penalty factor and Grey incidence matrix are introduced to correct the similarity matching function. Then, we use regression-Markov chain prediction method to analyze the change of the load state of the candidate resources and select the suitable resource. Finally, we analyze the precision and recall of the matching method through simulation experiment, validate the effectiveness of the matching method, and prove that regression-Markov chain prediction method can improve the prediction accuracy.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献