Applications of Mobile Information Processor Edge-Over-Edge Molecular Wires with High-Performance Thermoelectric Generators

Author:

Binoj J. S.1,Hassan Shukur Abu2,Khan Reefat Arefin3ORCID,Ali Alamry4

Affiliation:

1. Micromachining Research Centre, Department of Mechanical Engineering, Mohan Babu University, Tirupati, 517102 Andhra Pradesh, India

2. Centre for Advanced Composite Materials, Office of Deputy Vice-Chancellor (Research & Innovation), Universiti Teknologi Malaysia, Johor Bahru, 81310 Johor, Malaysia

3. College of Business Administration, IUBAT-International University of Business Agriculture and Technology, Dhaka, Bangladesh

4. Department of Mechanical Engineering, College of Engineering in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

Abstract

If high-efficiency organic isotherm models for mobile processors can be found, a variety of energy harvesting devices, such as Peltier coolers composed of flexible and transparent thin-film materials, might be manufactured. The thermoelectric characteristics of three zinc porphyrins (ZnP) were studied. Theoretical analyses of electron transport across a potassium (Zn-Diphenyl porphyrin: Zn-DPP) molecular sandwiched between electrode surface with three distinct connections were investigated. The contribution of this research is to see what happens because once pyridine is added above the surface of the zinc-porphyrin skeleton, the “edge-over-edge” dimer created from stacked formed rings has a high electrical conductance, minimal exciton thermal conductance, and a large thermal diffusivity on the order of 300 V K1. At room temperature, these variables add up to a projected ZT 4 figure of merit, the greatest ZT for a single organic molecule ever seen. The stacked arrangement of the porphyrin rings causes low phonon thermal conductance, which delays phonon transport across the edge-over-edge molecule and increases the Seebeck coefficient, resulting in a higher ZT value.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3