Finite Element Analysis of Air Flow and Temperature Distribution on Surface of a Circular Obstacle with Resistance and Orientation of Screen

Author:

Memon Abid A.1ORCID,Memon M. Asif1ORCID,Alqahtani Aisha M.2ORCID,Bhatti Kaleemullah1ORCID,Nonlaopon Kamsing3ORCID,Khan Ilyas4ORCID,Andualem Mulugeta5ORCID

Affiliation:

1. Department of Mathematics and Social Sciences, Sukkur IBA University, Sukkur 65200, Sindh, Pakistan

2. Mathematical Sciences Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

3. Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

4. Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia

5. Bonga University, Department of Mathematics, Bonga, Ethiopia

Abstract

Nonisothermal flow through the rectangular channel on a circular surface under the influence of a screen embedded at the middle of a channel at angles θ is considered. Simulations are carried out via COMSOL Multiphysics 5.4 which implements the finite element method with an emerging technique of the least square procedure of Galerkin’s method. Air as working fluid depends upon the Reynolds number with initial temperature allowed to enter from the inlet of the channel. The nonisothermal flow has been checked with the help of parameters such as Reynolds number, angle of the screen, and variations in resistance coefficient. The consequence and the pattern of the velocity field, pressure, temperature, heat transfer coefficient, and local Nusselt number are described on the front surface of the circular obstacle. The rise in the temperature and the flow rate on the surface of the obstacle has been determined against increasing Reynolds number. Results show that the velocity magnitudes are decreasing down the surface and the pressure is increasing down the surface of the obstacle. The pressure on the surface of the circular obstacle was found to be the function of the y-axis and does not show any impact due to the change of the resistance coefficient. Also, it was indicated that the temperature on the front circular surface does not depend upon the orientation of the screen and resistance factor. The heat transfer coefficient is decreasing which indicates that the conduction process is dominating over the convection process.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

Hindawi Limited

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3