Insight into the dynamics of second grade hybrid radiative nanofluid flow within the boundary layer subject to Lorentz force

Author:

Jawad Muhammad,Saeed Anwar,Tassaddiq Asifa,Khan Arshad,Gul Taza,Kumam Poom,Shah Zahir

Abstract

AbstractThe magnetohydrodynamic hybrid second-grade nanofluid flow towards a stretching/shrinking sheet with thermal radiation is inspected in current work. Main concern of current investigation is to consider hybrid $$Al_{2} O_{3} - Cu$$ A l 2 O 3 - C u nanofluid which is perceived by hanging two dissimilar kinds of nanoparticles known as alumina and copper within the base fluid. The fluid motion is produced by non-linear stretching/shrinking sheet. The modeled equations which comprise of energy, motion and continuity equations are changed into dimensionless form using group of similar variables. To determine the solution of transformed problem, the Homotopy Analysis technique is used. The findings of this work revealed that the magnetic parameter improves the heat transfer rate. This work also ensures that there are non-unique solutions of modeled problem for shrinking case and a unique solution for stretching case. Higher values of $${\text{Re}}_{x}$$ Re x results in declining of flow field. Rise in $$M$$ M agrees to a decline in velocity distributions. Higher values of second order fluid parameter reduces the viscosity of fluid and accordingly velocity increases. Velocity profile is also a decreasing function of volume friction.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3