Research of Single Image Rain Removal Algorithm Based on LBP-CGAN Rain Generation Method

Author:

Xue Ping12ORCID,He Hai2

Affiliation:

1. The Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentation of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080, China

2. School of Automation, Harbin University of Science and Technology, Harbin 150080, China

Abstract

Rain has an undesirable negative effect on the clarity of the collected images. In situation where images are captured in rain, it can lead to a loss of information and disability in reflecting real images of the situation. Consequently, rain has become an obstacle in outdoor scientific research studies. The reason why images captured in rain are difficult to process is due to the indistinguishable interactions between the background features and rain textures. Since current image data are only processed with the CNN (convolutional neural network) model, a trained neural network to remove rain and obtain clear images, the resulted images are either insufficient or excessive from standard results. In order to achieve more ideal results of clearer images, series of additional methods are taken place. Firstly, the LBP (local binary pattern) method is used to extract the texture features of rain in the image. Then, the CGAN (conditional generative adversarial network) model is constructed to generate rain datasets according to the extracted rain characteristics. Finally, the existing clear images, rain datasets generated by CGAN, as well as the images with rain are used for convolution operation to remove rain from the images, and the average value of PSNR (peak signal to noise ratio) can reach 38.79 by using this algorithm. Moreover, a large number of experiments are done and have proven that this joint processing method is able to successfully and effectively generate clear images despite the rain.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3