MARR-GAN: Memristive Attention Recurrent Residual Generative Adversarial Network for Raindrop Removal

Author:

Chai Qiuyue1,Liu Yue12ORCID

Affiliation:

1. School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China

2. Changchun Changding Electronic Technology LLC, Changchun 130012, China

Abstract

Since machine learning techniques for raindrop removal have not been capable of completely removing raindrops and have failed to take into account the constraints of edge devices with limited resources, a novel software-hardware co-designed method with a memristor for raindrop removal, named memristive attention recurrent residual generative adversarial network (MARR-GAN), is introduced in this research. A novel raindrop-removal network is specifically designed based on attention gate connections and recurrent residual convolutional blocks. By replacing the basic convolution unit with recurrent residual convolution unit, improved capturing of the changes in raindrop appearance over time is achieved, while preserving the position and shape information in the image. Additionally, an attention gate is utilized instead of the original skip connection to enhance the overall structural understanding and local detail preservation, facilitating a more comprehensive removal of raindrops across various areas of the image. Furthermore, a hardware implementation scheme for MARR-GAN is presented in this paper, where deep learning algorithms are seamlessly integrated with neuro inspired computing chips, utilizing memristor crossbar arrays for accelerated real-time image-data processing. Compelling evidence of the efficacy and superiority of MARR-GAN in raindrop removal and image restoration is provided by the results of the empirical study.

Funder

Science and Technology Project of Jilin Province

Changchun Science and Technology Bureau Youth Team Innovation Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3