Performance of Fitness Functions Based on Natural Frequencies in Defect Detection Using the Standard PSO-FEM Approach

Author:

Li Xiao-Lin1,Serra Roger1ORCID,Olivier Julien2ORCID

Affiliation:

1. INSA Centre Val de Loire, Gabriel Lamé Mechanics Laboratory (LAME) E.A. 7494, 41000 Blois, France

2. INSA Centre Val de Loire, Laboratoire d’Informatique Fondamentale et Appliquée de Tours (LIFAT-EA6300), 41034 Blois, France

Abstract

Structural defect detection based on finite element model (FEM) updating is an optimization problem by minimizing the discrepancy of responses between model and measurement. Researchers have introduced many methods to perform the FEM updating for defect detection of the structures. A popular approach is to adopt the particle swarm optimization (PSO) algorithm. In this process, the fitness function is a critical factor in the success of the PSO-FEM approach. Our objective is to compare the performances of four fitness functions based on natural frequencies using the standard PSO-FEM approach for defect detection. In this paper, the definition of the standard PSO algorithm is first presented. After constructing the finite element benchmark model of the beam structure, four commonly used fitness functions based on natural frequencies are outlined. Their performance in defect detection of beam structures will be evaluated using the standard PSO-FEM approach. Finally, in the numerical simulations, the population diversity, success rate, mean iterations, and CPU time of the four fitness functions for the algorithm are calculated. The simulation results comprehensively evaluate their performances for single defect and multidefect scenario, and the effectiveness and superiority of the fitness function S 4 will be demonstrated.

Funder

China Scholarship Council

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3