An Investigation of Particle Swarm Optimization Topologies in Structural Damage Detection

Author:

Li Xiao-LinORCID,Serra RogerORCID,Olivier JulienORCID

Abstract

In the past few decades, vibration-based structural damage detection (SDD) has attracted widespread attention. Using the response data of engineering structures, the researchers have developed many methods for damage localization and quantification. Adopting meta-heuristic algorithms, in which particle swarm optimization (PSO) is the most widely used, is a popular approach. Various PSO variants have also been proposed for improving its performance in SDD, and they are generally based on the Global topology. However, in addition to the Global topology, other topologies are also developed in the related literature to enhance the performance of the PSO algorithm. The effects of PSO topologies depend significantly on the studied problems. Therefore, in this article, we conduct a performance investigation of eight PSO topologies in SDD. The success rate and mean iterations that are obtained from the numerical simulations are considered as the evaluation indexes. Furthermore, the average rank and Bonferroni-Dunn’s test are further utilized to perform the statistic analysis. From these analysis results, the Four Clusters are shown to be the more favorable PSO topologies in SDD.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Some sufficient descent conjugate gradient methods and their global convergence

2. A Novel VBSHM Strategy to Identify Geometrical Damage Properties Using Only Frequency Changes and Damage Library

3. Numerical Optimization–Theoretical and Practical Aspects;Bonnans;Autom. Control IEEE Trans.,2003

4. Introduction to Meta-Heuristic and Evolutionary Algorithms;Bozorg-Haddad,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3