Nonfimbrial Adhesin Mutants Reveal Divergent Escherichia coli O157:H7 Adherence Mechanisms on Human and Cattle Epithelial Cells

Author:

Moreau Matthew R.1ORCID,Kudva Indira T.2,Katani Robab34,Cote Rebecca1,Li Lingling34,Arthur Terrance M.5,Kapur Vivek34ORCID

Affiliation:

1. Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA

2. Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, USA

3. Department of Animal Science, The Pennsylvania State University, University Park, PA, USA

4. The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA

5. Roman L. Hruska U.S. Mean Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, NE, USA

Abstract

Shiga toxin-producing, enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is a major foodborne pathogen causing symptoms ranging from simple intestinal discomfort to bloody diarrhea and life-threatening hemolytic uremic syndrome in humans. Cattle can be asymptomatically colonized by O157:H7 predominantly at the rectoanal junction (RAJ). Colonization of the RAJ is highly associated with the shedding of O157:H7 in bovine feces. Supershedding (SS) is a phenomenon that has been reported in some cattle that shed more than 104 colony-forming units of O57:H7 per gram of feces, 100–1000 times more or greater than normal shedders. The unique bovine RAJ cell adherence model revealed that O157:H7 employs a LEE-independent mechanism of attachment to one of the RAJ cell types, the squamous epithelial (RSE) cells. Nine nonfimbrial adhesins were selected to determine their role in the characteristic hyperadherent phenotype of SS O157 on bovine RSE cells, in comparison with human HEp-2 cells. A number of single nucleotide polymorphisms (SNPs) were found amongst these nonfimbrial adhesins across a number of SS isolates. In human cells, deletion of yfaL reduced the adherence of both EDL933 and SS17. However, deletion of eae resulted in a significant loss of adherence in SS17 whereas deletion of wzzB and iha in EDL933 resulted in the same loss of adherence to HEp-2 cells. On RSE cells, none of these nonfimbrial deletion mutants were able to alter the adherence phenotype of SS17. In EDL933, deletion of cah resulted in mitigated adherence. Surprisingly, four nonfimbrial adhesin gene deletions were actually able to confer the hyperadherent phenotype on RSE cells. Overall, this study reveals that the contribution of nonfimbrial adhesins to the adherence mechanisms and functions of O157:H7 is both strain and host cell type dependent as well as indicates a possible role of these nonfimbrial adhesins in the SS phenotype exhibited on RSE cells.

Funder

USDA-ARS CRIS

Publisher

Hindawi Limited

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3