Roadside LiDAR Vehicle Detection and Tracking Using Range and Intensity Background Subtraction

Author:

Zhang Tianya1ORCID,Jin Peter J.1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, 500 Bartholomew Rd, Piscataway, NJ 08854-8018, USA

Abstract

In this study, we developed the solution of roadside LiDAR object detection using a combination of two unsupervised learning algorithms. The 3D point clouds are firstly converted into spherical coordinates and filled into the elevation-azimuth matrix using a hash function. After that, the raw LiDAR data were rearranged into the new data structure to store the information of range, azimuth, and intensity. Then, the dynamic mode decomposition method is applied to decompose the LiDAR data into low-rank backgrounds and sparse foregrounds based on intensity channel pattern recognition. The coarse-fine triangle algorithm (CFTA) automatically finds the dividing value to separate the moving targets from static background according to range information. After intensity and range background subtraction, the foreground moving objects will be detected using a density-based detector and encoded into the state-space model for tracking. The output of the proposed solution includes vehicle trajectories that can enable many mobility and safety applications. The method was validated at both path and point levels and outperformed the state of the art. In contrast to the previous methods that process directly on the scattered and discrete point clouds, the dynamic classification method can establish the less sophisticated linear relationship of the 3D measurement data, which captures the spatial-temporal structure that we often desire.

Funder

New Jersey DOT Real-Time Signal Performance Measures

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Reference48 articles.

1. Pointnet: deep learning on point sets for 3d classification and segmentation;C. R. Qi

2. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection

3. PointPillars: Fast Encoders for Object Detection From Point Clouds

4. Vehicle detection from 3d lidar using fully convolutional network;B. Li,2016

5. Object detection and classification in occupancy grid maps using deep convolutional networks;S. Wirges

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3