A Cellular Automata Model for Heterogeneous Traffic Flow Incorporating Micro Autonomous Vehicles

Author:

Tanveer Muhammad1ORCID,Kashmiri Faizan Ahmad2,Yan Huimin1,Wang Tianshi1,Lu Huapu1ORCID

Affiliation:

1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China

2. Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China

Abstract

Despite the fact that significant research efforts have been made to the traffic flow theory of autonomous vehicles and manual vehicles, few existing studies have incorporated different modes of both vehicles in their analysis. In this study, we develop a cellular automata simulation model to investigate the impact of different modes of autonomous vehicles (autonomous car, autonomous bus, and autonomous micro car) and conventional vehicles (manual car, manual bus, and manual micro car) on the characteristics of traffic flow. A new type of autonomous mode, i.e., autonomous micro car, is investigated in the model to study the effects of this vehicle mode on the overall capacity of the network. Furthermore, two types of lane-changing behavior, i.e., aggressive lane changing and polite lane changing, are incorporated into the model. The results reveal that micro cars (manual and autonomous) have the potential to reduce traffic congestions and increase the capacity or flow rate (vehicles/hour) of the road. Where the average vehicle occupancy is less than 2, if autonomous micro cars are deployed alongside autonomous cars, the flow rate (vehicles/hour) can be increased significantly. The results highlight the significance of the autonomous micro cars to traffic flow, passenger occupancy, and road capacity.

Funder

Chinese Academy of Engineering

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3