The Impact of Three Specific Collaborative Merging Strategies on Traffic Flow

Author:

Shang Xue-Cheng12ORCID,Liu Feng2ORCID,Li Xin-Gang1ORCID,Janssens Davy2,Wets Geert2

Affiliation:

1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China

2. Transportation Research Institute (IMOB), Hasselt University, Wetenschapspark 5, Bus 6, B-3590 Diepenbeek, Belgium

Abstract

On-ramps are considered to be one of the common traffic bottlenecks. In order to improve the operation efficiency of on-ramps, scholars worldwide have proposed various vehicle merging strategies. In this study, we designed different rules to express three collaborative strategies and studied their impact on on-ramp systems. Cellular automata models were used to simulate the systems under different situations, and the average speed and traffic flow rate of both the main roads and ramps were analyzed. The results show that (1) all the three merging strategies give excessive “priority” to the merging vehicle, leading to a severe reduction in the traffic performance of the main road; (2) nevertheless, these strategies have different effects on the entire system with a one-lane or two-lane main road. Due to the lane-changing behavior, the system with a two-lane main road has more advantages than that featured with a one-lane road, making the former system performing better than the latter under the same strategies; (3) the vehicles on the ramp and main road affect each other, and as the vehicle entering probabilities become large, the traffic flow rate on the main road decreases whereas that on the ramp increases. However, the effect is not unlimited, the flow rate on both roads finally reaches a stable level (forming a “platform”); and (4) large values of the merging safety distance parameter decrease the flow rate of the entire system. All the previous results provide a deep understanding of the impact of the three merging strategies on traffic flow, contributing to the design of on-ramp systems that have better operation efficiency and low levels of congestion.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3