Affiliation:
1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China
2. Transportation Research Institute (IMOB), Hasselt University, Wetenschapspark 5, Bus 6, B-3590 Diepenbeek, Belgium
Abstract
On-ramps are considered to be one of the common traffic bottlenecks. In order to improve the operation efficiency of on-ramps, scholars worldwide have proposed various vehicle merging strategies. In this study, we designed different rules to express three collaborative strategies and studied their impact on on-ramp systems. Cellular automata models were used to simulate the systems under different situations, and the average speed and traffic flow rate of both the main roads and ramps were analyzed. The results show that (1) all the three merging strategies give excessive “priority” to the merging vehicle, leading to a severe reduction in the traffic performance of the main road; (2) nevertheless, these strategies have different effects on the entire system with a one-lane or two-lane main road. Due to the lane-changing behavior, the system with a two-lane main road has more advantages than that featured with a one-lane road, making the former system performing better than the latter under the same strategies; (3) the vehicles on the ramp and main road affect each other, and as the vehicle entering probabilities become large, the traffic flow rate on the main road decreases whereas that on the ramp increases. However, the effect is not unlimited, the flow rate on both roads finally reaches a stable level (forming a “platform”); and (4) large values of the merging safety distance parameter decrease the flow rate of the entire system. All the previous results provide a deep understanding of the impact of the three merging strategies on traffic flow, contributing to the design of on-ramp systems that have better operation efficiency and low levels of congestion.
Funder
National Natural Science Foundation of China
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献