Study of Displacement Characteristics of Fire Flooding in Different Viscosity Heavy Oil Reservoirs

Author:

Liu Bingyan1,Liang Jinzhong1,Zhao Fang2,Liu Tong2,Qi Zongyao2,Liu Fengchao1,Liu Pengcheng3ORCID

Affiliation:

1. Beijing Techvista Scientific Co., Ltd., Beijing 100083, China

2. State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China

3. School of Energy Resources, China University of Geosciences, Beijing 100083, China

Abstract

A field test in the Xinjiang oilfield in China shows that the viscosity of heavy oil has a certain influence on the combustion dynamics and injection-production performance of fire flooding. The experiment in this study uses a one-dimensional combustion tube to study the temperature, gas composition, and air injection pressure and the production performance of the fire flooding of heavy oil with different viscosities. The results show that the oil viscosities of 1180–22500 mPa·s can achieve stable combustion, and the O2 content of the gas produced during the stable combustion stage is <0.5%. The higher the viscosity of the heavy oil, the higher the temperature in the burned zone and the smaller the range of the temperature increase in the unburned zone. The air injection pressure will increase rapidly until a stable seepage channel is formed, and then, it will drop to a level close to the formation pressure. High-viscosity heavy oil requires a higher air injection pressure and will remain in the high-pressure stage for a longer period of time. Low-viscosity heavy oil has a low water cut in the early stage of fire flooding, a large oil production rate, and a low and stable air–oil ratio. The water cut of high-viscosity heavy oil increases rapidly in the early stage of fire flooding and then decreases gradually, so a good air–oil ratio can only be obtained in the middle and late stages of fire flooding. Thus, fire flooding may be more suitable for application in common heavy oil and some extra heavy oil reservoirs with lower viscosities.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3