Lithium-Ion Battery Thermal Event and Protection: A Review

Author:

Chang Chi-Hao1,Gorin Craig1,Zhu Bizhong1,Beaucarne Guy2,Ji Guo3,Yoshida Shin4

Affiliation:

1. The Dow Chemical Company, Dow Performance Silicones, USA

2. Dow Silicones Belgium SRL, Belgium

3. Dow Chemical (China) Investment Co. Ltd., China

4. Dow Toray Co., Ltd., Japan

Abstract

<div>The exponentially growing electrification market is driving demand for lithium-ion batteries (LIBs) with high performance. However, LIB thermal runaway events are one of the unresolved safety concerns. Thermal runaway of an individual LIB can cause a chain reaction of runaway events in nearby cells, or thermal propagation, potentially causing significant battery fires and explosions. Such a safety issue of LIBs raises a huge concern for a variety of applications including electric vehicles (EVs). With increasingly higher energy-density battery technologies being implemented in EVs to enable a longer driving mileage per charge, LIB safety enhancement is becoming critical for customers. This comprehensive review offers an encompassing overview of prevalent abuse conditions, the thermal event processes and mechanisms associated with LIBs, and various strategies for suppression, prevention, and mitigation. Importantly, the report presents a unique vantage point, amalgamating insights sourced not only from academic research but also from a pragmatic industrial perspective, thus enriching the breadth and depth of the information presented.</div>

Publisher

SAE International

Subject

Fuel Technology,Automotive Engineering,Fuel Technology,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3