A Model-Based Decoupling Method for Surge Speed and Heading Control in Vessel Path Following

Author:

Wang Xudong1,Zhao Jin1ORCID,Geng Tao2

Affiliation:

1. Guangdong HUST Industrial Technology Research Institute, Guangdong Province Key Laboratory of Digital Manufacturing Equipment, Key Laboratory of Image Processing and Intelligent Control of the Ministry of Education of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China

2. Guangdong HUST Industrial Technology Research Institute, Dongguan 523000, Guangdong, China

Abstract

In this paper, to solve the surge speed loss problem generated by sway-yaw motion in the path-following control, a model-based decoupling (MBD) method for surge speed and heading control in vessel path following is proposed. The guidance law is designed independently in the kinematic level. In the kinetic level, the surge model and sway-yaw model can be decoupled by assuming that the surge speed varies slowly, and the heading controller and surge speed controller are designed under the framework of the MBD method. Commonly, the surge speed controller is ignored in the path following or designed separately. In the MBD method, the heading controller is designed first through the MPC method, and the coupling terms between the surge model and sway-yaw model are treated as time-varying disturbances, which can be predicted through the outcomes of the heading controller. Then, the time-varying disturbances are compensating in the surge speed controller so that the surge speed can be feedforward compensated to achieve better performance. The simulation results compared the surge speed performance in path following of the MBD method and usual approaches to illustrate the effectiveness of the MBD method.

Funder

Guangdong Innovative and Entrepreneurial Research Team Program

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3